The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii

نویسندگان

  • Eleanor A. Latomanski
  • Patrice Newton
  • Chen Ai Khoo
  • Hayley J. Newton
چکیده

Coxiella burnetii is an intracellular bacterial pathogen that infects alveolar macrophages and replicates within a unique lysosome-derived vacuole. When Coxiella is trafficked to a host cell lysosome the essential Dot/Icm type IV secretion system is activated allowing over 130 bacterial effector proteins to be translocated into the host cytosol. This cohort of effectors is believed to manipulate host cell functions to facilitate Coxiella-containing vacuole (CCV) biogenesis and bacterial replication. Transposon mutagenesis has demonstrated that the Dot/Icm effector Cig57 is required for CCV development and intracellular replication of Coxiella. Here, we demonstrate a role for Cig57 in subverting clathrin-mediated traffic through its interaction with FCHO2, an accessory protein of clathrin coated pits. A yeast two-hybrid screen identified FCHO2 as a binding partner of Cig57 and this interaction was confirmed during infection using immunoprecipitation experiments. The interaction between Cig57 and FCHO2 is dependent on one of three endocytic sorting motif encoded by Cig57. Importantly, complementation analysis demonstrated that this endocytic sorting motif is required for full function of Cig57. Consistent with the intracellular growth defect in cig57-disrupted Coxiella, siRNA gene silencing of FCHO2 or clathrin (CLTC) inhibits Coxiella growth and CCV biogenesis. Clathrin is recruited to the replicative CCV in a manner that is dependent on the interaction between Cig57 and FCHO2. Creation of an FCHO2 knockout cell line confirmed the importance of this protein for CCV expansion, intracellular replication of Coxiella and clathrin recruitment to the CCV. Collectively, these results reveal Cig57 to be a significant virulence factor that co-opts clathrin-mediated trafficking, via interaction with FCHO2, to facilitate the biogenesis of the fusogenic Coxiella replicative vacuole and enable intracellular success of this human pathogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis.

Successful macrophage colonization by Coxiella burnetii, the cause of human Q fever, requires pathogen-directed biogenesis of a large, growth-permissive parasitophorous vacuole (PV) with phagolysosomal characteristics. The vesicular trafficking pathways co-opted by C. burnetii for PV development are poorly defined; however, it is predicted that effector proteins delivered to the cytosol by a de...

متن کامل

Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response...

متن کامل

Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.

The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogen...

متن کامل

A Screen of Coxiella burnetii Mutants Reveals Important Roles for Dot/Icm Effectors and Host Autophagy in Vacuole Biogenesis

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. The molecular mechanisms used by this bacterium to create a pathogen-occupied vacuole remain largely unknown. Here, we conducted a visual screen on an arrayed library of C. burnetii NMII transposon insertion mutants to identify genes required for biogenesis of a mature Coxiella-containing vacuole (CCV)...

متن کامل

Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein.

Coxiella burnetii and Legionella pneumophila are evolutionarily related pathogens with different intracellular infection strategies. C. burnetii persists within and is transmitted by mammalian hosts, whereas, L. pneumophila is found primarily in the environment associated with protozoan hosts. Although a type IV secretion system encoded by the defect in organelle trafficking (dot) and intracell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016